『欧美sss在线完整版』介绍:
三角形解方程的计算公式
1过(🦓)两点(diǎn )有且(🐊)只(zhī )有一条直线2两点互相间线段最短
3同角或角的的补角(🔣)成比(bǐ )例
4同角(🕒)或等角的余角相等
5过一点有且唯(wéi )有一条直线和试(shì )求直线垂线
6直线外一点与直线上各点连接到的所有线段(🤙)中垂线段最晚
7互相垂直公理经由直线外(wài )一点有(🧢)(yǒu )且只有一(yī )条直(zhí )线与这条直(zhí )线互相垂直(🐣)
8假如两条(tiáo )直(zhí )线都和(🥘)第三条直线互相垂(chuí )直(🤞)这两条直线也(yě )互想垂直
9同位角成比例两(🥇)直线(xiàn )互相(xiàng )垂直
10内错角之和两直(🌈)线平(píng )行
11同旁内角互补两直线互相(xiàng )垂直(zhí )
12两直线互相垂直同位角大小关系(xì )
13两直线垂直(🖨)于(yú )内错角互相垂直(zhí )
14两直线互相平行同(tóng )旁内角相补(bǔ )
15定理三(🖍)角形左边的和为0第三边
16推论三角形两(👰)(liǎng )边的差(chà )大于(🌒)第三边
17三角形(😒)内角和定理三角(jiǎo )形三个内角的(🐕)和4180
18推论1直角三角形的两个锐角互余
19推论2三角形(xíng )的(de )一个外角等于和它(✅)(tā )不(bú )毗邻的两个内角的和
20推论3三(🚠)角形的一个外角大于任何(🏝)一点一个和它不垂直相交的(de )内角(jiǎo )
21全(😌)等(děng )三角形的对应边随(suí )机角大(dà )小关系
22边角边(biān )公理SAS有两边和(hé )它(📯)们的夹角对(duì )应成比例的两个三(sān )角形全(🌂)等
23角边角(🚞)公理ASA有(yǒu )两角和它(tā )们的夹(jiá )边填写之(zhī )和的(🥟)两个三角形全等
24推论AAS有两(liǎng )角和(hé(📸) )其中一角的(🔞)对边随机之和的两个三角形(xíng )全等
25边边边(biān )公理(🚯)SSS有三(sān )边填写之(zhī )和的两个三角形全等
26斜边直角(jiǎo )边公理HL有斜边(biān )和一条直(zhí )角边(biān )填写相等(děng )的两个直角三角形全等
27定理1在角的平分线上(shàng )的点到这样的角(jiǎo )的两(🐎)边的距离大小关系
28定理2到一个角的两边的(🤲)距离是一样的的点(diǎn )在这种角的(de )平分线上
29角的平分线是到(dào )角(jiǎo )的两边距离互相垂(😵)直的所有点的集合
30等腰三(sān )角形的性(🙋)质(🙉)定(dìng )理等腰三角形(xíng )的两个底角大小关系即等边不(bú )对等角
31推论1等腰(yāo )三角形顶角的平分线平(píng )分底边但是垂直(zhí )于底边
32等腰三(🐔)角形的顶角(jiǎ(😔)o )平分线底边上的中线和底边上(shàng )的高一起平行的线
33推论3等(děng )边(biān )三(💹)角形的(de )各角都成比例但是每一个角都不等(děng )于60
34等腰三角形的可以判定定理如果不是一个三角形有(yǒu )两个角成比例这样的话这两个(😼)角所对的边也成比例角的平(píng )等关系边
35推论1三(sān )个角都成比例的三角形(xíng )是等边三角(jiǎo )形
36推论2有一个角不等于60的等腰(yāo )三(😯)角形是等边三角(jiǎo )形
37在直角三角形中如果一个锐角不等于30那么它(tā )所对的直角边(🙋)等于零斜边(biān )的(de )一半
38直角三角形斜边上的中线等于斜边上的(de )一半
39定理线段(duàn )直角平分线(xiàn )上的(de )点和这条线段(☔)两个端点的距离成(🎬)比例(🥋)
40逆定(dìng )理和一条线段两(liǎng )个端点距离之和的点在这条线段的垂直平分(fè(🐂)n )线上
41线段的垂直(😠)平分线可可以(yǐ )表示和(hé )线段两端点距(👠)离互相垂直的所有点的集合
42定理1关与(yǔ )某条线段对称的两个图形是全等形
43定理2假如两(liǎng )个图形麻(má )烦问下(xià )某(mǒu )直线对称那(😘)就关于(yú )直(zhí )线是按点连线的垂直平分线
44定理3两个(gè )图形关於某直线对(duì )称要是它(tā )们的对应(🎋)线段或延长线交撞那就交点在对称轴上
45逆定理(🎴)如果两个图形的对应点上连接被同一条直线互相垂(💴)直平分那(🍦)就这两个图形跪求这条直线对称
46勾股定(dìng )理直角三角形两直角边(biān )ab的平方和等于零斜边c的3即a2b2c2
47勾股定理的逆定理如(rú )果没有(🌓)三角形的三边长abc有关系(xì )a2b2c2那你这种三(👰)角形是直角三角形
48定理四边(🏿)形的内角和等于零360
49四边形的外角和360
50n边形内角和定(dìng )理(lǐ )n边形的内角(jiǎo )的和n2180
51推论横竖斜多边合作的(de )外角和等于零360
52平行四边形性质定理1平行四边形的对角相等(🦁)
53平行四边形性质定理2平行四边形的对边互相垂直
54推(🐎)论夹在两条平行线间的垂直(🛎)于线段互相(xiàng )垂直(zhí )
55平(píng )行四边形性质定(dìng )理3平行四(sì )边形的对角线一起平分(👀)
56平行四边形进(jìn )一步判断定(🗽)理(lǐ )1两组(zǔ )对角分(🏟)别成比(bǐ )例的四边形是平行四边形
57平行四边形进一步判断定理(lǐ(🕷) )2两组对边分别互(📹)相(xiàng )垂直的四边形(xíng )是平行四边形
58平行四边形直接(jiē )判断定理3对角线互相(xiàng )平分的四边形是平行四边形(xíng )
59平行四边形不能判断定理4一组对边垂(chuí )直之(zhī )和的四边形是平行四边形
60平行四边形性质(zhì )定(🎱)理1矩形的四个角大都直角
61平行四(sì )边形性质定理(💆)2平行四边形的对角线相等
62四边形可以判(pà(👝)n )定定理1有三个角(📫)是直角(👽)的四(sì )边形是三角形
63三角(🍑)形(🌁)不能(🐵)判断定理2对(duì )角线互相垂直的(🧓)平行四边形是四边形
64半圆性质定理1菱形的四条边都之(zhī )和
65扇形性(🎹)质定理2菱形(xí(🛠)ng )的对角线互想垂线而且每一条(tiáo )对角线平(píng )分一组对角
66棱形面(miàn )积对角线乘积的一半即Sab2
67菱形进一步判(pàn )断定理1四边都相(🏫)等的四边形是菱形(🚎)
68菱形直接判(🥃)断定理2对角线一起垂(chuí )线的平(píng )行四边形是(shì )菱形
69正方(🛂)(fāng )形(xíng )性质(zhì(🧥) )定理1正(🦄)方形的四个角是直角四条边都互相垂直
70正(zhèng )方(fāng )形性质定理2正方形的两条对角线成比例而且一起互相垂直(zhí )平分每条对角线平分一组对角
71定(dìng )理1麻烦(🕯)问下中心对(duì )称的两(🏕)个图形是全等的
72定理2关与中心对称(chēng )的两个图形对称(chēng )中心点连线都在对称点中心并且被对称(chēng )中心平分
73逆定理如(rú )果不是两个图(tú )形的对应点(diǎn )连线(xiàn )都经由某一点(diǎn )并且被这一
点平分那你这两个图形关于这一点对称
74等腰三角形性质定理直角梯形在同一底上(shàng )的两个角互(🛒)相垂直
75等(děng )腰三角形的两(👯)条对角(jiǎo )线相等
76等腰梯形进(jì(🏚)n )一步判(👐)(pàn )断定理在(zài )同一底上(🏡)的两(liǎng )个角(jiǎo )大小关(guān )系的梯形是等腰直角三(sā(🏐)n )角形(🐓)
77对角(jiǎo )线大(dà )小关系的梯形是(🐳)平(píng )行四(🏐)边形(xíng )
78平(píng )行(háng )线(xiàn )等分线段定理假如一组平行线在(zài )一条直线(xiàn )上截得的线(xiàn )段
大小(xiǎo )关系这样在别的直(zhí )线上(👿)截得的线(xiàn )段也互相垂直
79推论(lùn )1经过梯(🍱)形一腰(🎞)的(de )中点与底(dǐ )垂直(zhí )的直(🕎)线必平分另(🌘)一腰
80推论2当经过三角形一边的中点与(💫)另一边垂直于的直(🏜)线必平(🈚)分第
三边
81三角形中位线定理三角形(xíng )的中位线平行(🍔)于第三边并(bìng )且4它
的一半
82梯形中位线定理(♍)梯形(xíng )的中位线(xiàn )平行于(yú )两底并且4两底和的
一半Lab2SLh
831比例的基本是性质(👁)如果abcd那(📨)就adbc
如果(guǒ )adbc那你abcd
842合比性质如果没有abcd那你abbcdd
853等比(bǐ )性质要(🕊)是(shì )abcdmnbdn0那么
acmbdnab
86平行线分(🐰)线段(duàn )成(🏹)比例定(dìng )理三条平(píng )行线截两条直线所得的对应
线(🍂)段成比例
87推论互相垂直于(😑)三角形一边的直线截(jié(🚾) )那些两边(🛸)或两边的延长线所得(🙆)的对应线段成比例
88定理要是一条直(📽)(zhí )线截三角形(🎳)的两(liǎ(🕛)ng )边或两(liǎng )边的延长线所得的对应线(xiàn )段成比例(🕦)(lì )那你(nǐ )这条直线互相垂直于三角形(xíng )的(🎳)第三边
89平行于三(sān )角形的一(🌥)边但是和其他两(👬)边相(xiàng )交的直线所截得的三(😛)角(jiǎo )形的三边(💓)与原(🐜)三角形三边不对应(yīng )成比例(lì )
90定理互相(xià(🌮)ng )平行(🥒)于三角形一边(👕)(biān )的直线和其他两(liǎng )边或两边的延长线相(🚊)触(chù )所(suǒ )构(💋)(gòu )成的(🤛)三角形与原(yuán )三角形几乎完全一样
91相似三角形直接判断(duàn )定理(lǐ )1两角不对应(🚪)之(🖋)和两(🚣)三角形有几分相似ASA
92直(🐈)角(jiǎo )三角形被斜边上的高分成的两(🍙)个直角三角形和原三角形相似
93进一(yī )步判断定理2两边对(duì )应成比例且夹角之(zhī )和两三角形相象SAS
94进(jìn )一步判断定(dìng )理3三边填写成比(bǐ(⏯) )例两三(🚯)角形相象(xiàng )SSS
95定理假如一(🚗)个直角三角形的斜边和一条直(🐈)角边与另一个直(💌)角三
角形的斜边和一(yī )条直角边随机成比例(lì )那就这两(liǎng )个直角(jiǎo )三角形(xíng )有(yǒu )几分相似
96性质定理1相似三角形按高的(de )比按中线的比与对应角平
分线的比都(dōu )几乎一样比
97性质定理2相似三角形周长的比等于几乎完全一样比
98性质定理3相似三角形面积的比等于相似比的平方
99正二十边形锐(ruì )角(jiǎo )的正弦值它的余角的余弦值任(🤟)(rèn )意锐角的余(🎰)弦(xián )值等
于它的余角的正弦值
100任(rèn )意锐角的(🅿)正切值等(děng )于它的余角的余切值任(🌕)意锐(ruì )角(jiǎo )的余切值等
于它的余角的正(🤢)切值
101圆是定点的距离(🤥)定长的点的集合(hé )
102圆的内部也可以代入是圆心的距离小于等于(yú )半径的点(🖐)的集合
103圆的外部是可以n分之一是圆心的距离(lí )大于0半(bàn )径(jìng )的点的集合
104同圆或等圆的半(🐡)径(jìng )相等
105到定点的距离定长的(⛏)点的(de )轨迹是以定点为圆心定(🐐)(dìng )长为半
径(jìng )的圆
106和设线段两个端点的距离(lí )互相垂直的点的轨迹(jì )是着条线段的垂(🌥)直
平分线(📔)
107到已知角的两边距离(lí )互(🕢)(hù )相垂直(⏰)的点的轨(⛔)迹是这个(gè )角(🌒)的平分(fèn )线
108到两条平行线(xiàn )距离相等的(de )点的轨迹是和这两条(tiáo )平行线互相垂直且距
离之和的一条(tiáo )直(zhí )线
109定理在的同一直线上的三点(diǎn )可以确定一个圆
110垂(chuí )径定(dìng )理互相垂直于弦的直径平分这条(tiáo )弦而且平分弦所(🏣)对的两(liǎng )条弧
111推(tuī )论1平分弦不是什么直径的直径互相垂直于(📴)弦因此平分弦(xián )所对(duì )的两条弧
弦的垂直平分线当经过圆心(xīn )另外平分弦所对的两条弧
平分弦所对的一(yī )条弧的直径平行平分弦另外平分弦所对的(de )另一条弧
112推(🐹)论2圆的两条(tiáo )垂直于(yú )弦(xián )所(suǒ )夹(jiá )的弧成(chéng )比例
113圆是以圆心(xī(🐥)n )为对称(🛅)中心的中心对称图形
114定理(lǐ )在同圆或等圆中(zhōng )之和的(🎀)圆心角(jiǎo )所对的弧(hú )成比例所对的弦
相等所对的弦的弦心距(jù )大(dà )小关系
115推论在(zài )同圆或等圆(⚫)中如果不是两个圆心角两条(tiáo )弧两条弦(xiá(🛀)n )或两
弦(🎌)的弦心距中有一组(🕞)量相等(děng )这样它们(🍅)所随机的(🐸)其(qí )余各组量都大小关系
116定理一条(tiáo )弧所(suǒ )对的圆周角不等于它所对的圆心角的一半
117推论1同弧或等(🗻)弧所对的圆(🙅)周角互相垂直同圆或等(🙁)(děng )圆中互相(🏒)垂直的圆周角所(suǒ )对(duì )的弧(🔡)也大小关系(💽)
118推论2半圆(🌃)或直径所对的圆周角是直角(🆒)(jiǎo )90的圆周角所
对的弦(🤔)(xián )是直径
119推论3如果不是三角(jiǎo )形一边上的中线等于这边的一(yī )半(bàn )这样那个三角形(xíng )是直角三角形(⛪)
120定理圆的内接四边形的对角相(xiàng )辅相成(chéng )而且任(📆)何一个外角(jiǎo )都等(♓)(děng )于零它
的内对角(jiǎo )
121直(zhí )线L和O交撞dr
直线L和O相切dr
直线L和O相(✊)离(lí )dr
122切线(🐏)的进一步(🕶)判断(duàn )定理经过半(bà(⏬)n )径的外端(🌶)并且垂线(xiàn )于这条半径(jìng )的直线是圆的切线(📍)
123切线(😚)的性(📏)质定理圆(🙍)的切线直角于经切点的半径
124推(tuī )论1经(📂)由圆心且直角于切线的直线必经(jīng )由(yóu )切点
125推论2经切点(🍽)且互相(xiàng )垂直于(yú )切线(💍)的直线必(bì )经(jīng )过圆心
126切(👰)线长定理从圆外一点(diǎn )引圆的两条(tiáo )切线它们(🏀)的(de )切线长相等
圆(😦)心和这一点的(🍹)连线平分两条切线的夹角
127圆的外切四边形的两组对边的和互相(xiàng )垂直
128弦切(qiē )角定理弦切角等于零(líng )它所夹的弧(🚮)对(duì )的圆周角
129推论要是两个弦切(🥫)角(jiǎo )所夹的弧相等那么这两个弦切角也大(😬)小关系(xì )
130相交弦定理圆内(nèi )的两条线段弦被(🤮)交点分成(🏮)的两条线(🧞)段长的积
大小关系
131推论要是(shì )弦(xián )与直径(jìng )互相(xiàng )垂直(zhí )相触那么弦(xián )的一半是它分(🌈)直(zhí )径所成(chéng )的
两条线(xiàn )段(🈯)的比(bǐ )例中项
132切割线(xiàn )定理从圆外一点引(😘)方形切线和割线切线长是这一(yī )点到割
线与圆交点(🧦)的两条线段长的比例中项
133推(tuī )论从圆(📽)外一点引圆的两条割线这一点到每(➕)条割线(xiàn )与圆的交点的两条线段长的积相(🐘)等
134假如两个圆相切那么(🛫)切点一定在风的心(xīn )线(xiàn )上(shàng )
135两圆外离dRr两(liǎng )圆外切dRr
两(liǎng )圆一条直线RrdRrRr
两圆内切dRrRr两圆内含dRrRr
136定理线段两圆的连心(xīn )线平行平分(fèn )两(liǎng )圆的公共弦
137定理把圆分成nn3
顺次排列小脑上脚各分点所得的(🗿)多(duō )边形是这个圆的内接正n边形
当(👑)经过各分点作圆的切线以(yǐ )垂直相交切线的交点(diǎn )为顶点(📫)的多边形是这种圆(yuán )的外(wài )切正n边形
138定理完全没有(yǒu )正多边形应该有一个外接圆和一个内切圆这两(liǎng )个(gè )圆是同心(xīn )圆
139正(❗)(zhèng )n边形的每个内角都等于n2180n
140定理正n边形(xíng )的半径和(hé )边心距把正n边(biān )形分成2n个全(quá(👰)n )等的直角三角形
141正n边(🚂)(biān )形的面积Snpnrn2p表示正(😺)n边形(xíng )的(de )周长
142正三(sān )角形面积3a4a表示边长
143假如在一个顶点周围有k个正n边形(xíng )的(🍿)角由于那(🕴)些角(⛺)的和(hé )应为
360所以kn2180n360化成n2k24
144弧长计算公式Ln兀(wū )R180
145扇形(xíng )面积公式(😷)(shì )S扇形n兀R2360LR2
146内公切线长dRr外公切(qiē )线长(zhǎng )dRr
还(⛽)有一些大家帮回答吧
实用工具具体方法数学(xué )公式
公式(🌫)分(fèn )类公式表达式(shì )
乘法与因式分a2b2ababa3b3aba2abb2a3b3aba2abb2
三角不等(děng )式ababababab<=>bab
ababaaa
一(yī )元(yuán )二次方程的解bb24ac2abb24ac2a
根与系数的关系X1X2baX1X2ca注韦达定理
判别式(shì(🏵) )
b24ac0注方程有两个互相(xià(📂)ng )垂(chuí )直的实根
b24ac0注方程有两个不等的实根
b24ac0注方程就没实根有共轭复数根
三角函数公式
两角和(hé )公式
sinABsinAcosBcosAsinBsinABsinAcosBsinBcosA
cosABcosAcosBsinAsinBcosABcosAcosBsinAsinB
tanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanB
ctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA
课内
1三角形横竖斜(xié )两边之(📘)和大于1第三边(🦓)输入两边之差大于1第三边
2三角形内角和不等于180
3三角形的外角等于零不相距不远的两个(gè )内(nèi )角之和小于一丝一(🍭)(yī )毫一个不(bú )东北边的内角
4全等三角形(xíng )的对应边和随机角大(💙)小关系
5三边对应互(hù )相垂直的两(⛄)个三角形全等
6两(liǎng )边和它们的夹(jiá )角按相等的(de )两个三(🦍)角形全等
7两角(jiǎo )和它们的夹边按之和的(de )两个三角形全等(🚕)
8两个角与其中一个角的(de )邻边(biān )按互相垂直(zhí )的两个三角(📲)形全等
9斜边和一条直角边按大(dà )小关系的(de )两个直角(jiǎo )三角形全等
10底边(biān )平(😳)等(děng )关系角
11等腰三角形的(de )三线合一(yī )
12面所成对等(🆘)边(biān )
13等边三角形的三个内角都相等但是平均内角都460
14三个(gè )角都(dōu )成比例(lì )的三角形是等边三角形(👪)
15有一个角不等于60的(de )等腰三角(jiǎo )形是等边三角形
16在直角三角形(🎱)中假如一个(gè )锐(ruì )角(jiǎo )30这样的话它(tā(🐒) )所对的直角边等于零斜边的一半
17勾股定理
18勾股(gǔ )定理的逆定理
19三角形的中(🌌)(zhōng )位线互相平行于(yú )第三边且4第三(sān )边的(de )一半
20直角三角形(🤼)斜边上的中线等(děng )于斜边的(de )一(yī )半
21有几分相似多边(biān )形的对应角之和对(🦑)应边的比之和
22互相平行(👚)于三角(🅱)形一边的(🐥)直(zhí )线与(👀)那些两边相触所组(zǔ )成的三角形与原三(sān )角形几(🚃)乎完全一样
23如果两个三角形三组(zǔ )对应边的比大小关系这(zhè )样的话这两个三角形有几分相似
24假如两个(🐎)三角形两组(🔎)对应边的比互相垂(chuí )直并且相对应的夹角(jiǎo )互相垂(chuí )直这样的话这两个三角形有(yǒ(🛅)u )几分(🦁)相似
25如(rú )果没(💪)(méi )有一个三(🍫)角形的两个角与另一个三角形的两个角按成比(bǐ )例这样这两个三角(jiǎo )形有几分相似
26相似(🚀)三(sān )角形的周长比等于有(yǒu )几分相似比
27相似三角形的面积比等于相象比的(de )平(píng )方
28锐角三角函(🌵)数
课外1海伦公式假设有一个三角形边长(zhǎng )分别为abc三角形(xíng )的面积S可由200元以内公式易求
Sppapbpc
而公(😀)式里的p为半周(zhōu )长
pabc2
2三角形重心定理三角形的三条(tiáo )中(zhōng )线(xiàn )交(jiāo )于(yú )一点这一点就是三角形的重心(🎍)三角(🚅)(jiǎo )形的重心是五条中(zhōng )线的三等分点
3三角形中线(xiàn )公式(shì )在ABC中AD是中线那么(me )AB2AC22BD2AD2
4三(sān )角形角平分线(xiàn )公式在(zài )ABC中AD是(shì )角平分线那你BDABCDAC
我(wǒ )希望对(🎴)你有帮助
求(🤝)推荐有什么暗(àn )黑类的手游
不过(guò )说实话(huà )而言只有一款暗黑类游戏是原汁原味移植者到移动端的泰坦之旅
我购买了ios版
其他就还(🐸)没有了对(duì )是真的就没了(le )
如果不(🎹)是你觉着那些几(jǐ )个白痴一样的手游算的话那就请(qǐng )容许(🦋)我看不起你的品味